
THIS REPORT HAS BEEN DELIMITED 

AND CLEARED FOR PUBLIC RELEASE 

UNDER DOD DIRECTIVE 5200,20 AND 

NO RESTRICTIONS ARE IMPOSED UPON 

ITS USE AND DISCLOSURE, 

DISTRIBUTION STATEMENT A 

APPROVED FOR PUBLIC RELEASE; 

DISTRIBUTION UNLIMTTED, 



ces Technical Information 
supply, you are requested to return this copy WHEN IT HAS SERVED 
t it may be made available to other requesters.  Your cooperation 

OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA 
1R THAN IN CONNECTION WITH A DEFINITELY RELATED 
tATION, THE U. S. GOVERNMENT THEREBY INCURS 
3ATION WHATSOEVER; AND THE FACT THAT THE 
TED, FURNISHED, OR IN ANY WAY SUPPLIED THE 

, v>fl OTHER DATA IS NOT TO BE REGARDED BY 
ofi AS IN ANY MANNER LICENSING THE HOLDER OR ANf OTHER 

^iON, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, 
PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. 

Reproduced    by 

CUMENT SERVICE CENTER 
KSOTT BUIIDSK8, DAYTON, 2, OHIO 

JCLA 



^^ OFFICE OF NAVAL RESEARCH 

V^ Contract N7onr-35801 

^N^ - T„ O. I, 

J^, 3 NR-041-032 

^ 
,_,i 

THE EFFECT OF ACCELERATION TIME ON PLASTIC DEFORMATION 

OF BEAMS UNDER TRANSVERSE IMPACT LOADING 

by 

D. S. Green 

DIVISION OF APPLIED MATHEMATICS 

BROWN UNIVERSITY 

PROVIDENCE, R, I 

June, 1954 

All-112 



!  - 

. 

All-112 

m 

The Effect of Acceleration Time on Plastic 

Defoi-mation of Beams under Transverse Impact Loading 

by 

D» St Green 

I 
M 

ABSTRACT 

This paper considers a special case of point impact 

loading on a beam which is free to move in the direction of 

striking*  The impact is such as to impart to the mid-point of 

the beam constant acceleration for a certain period; and then 

constant velocity for all subsequent time*  If this acceleration 

is sufficiently great, the beam will undergo permanent deforma- 

tion.  The analysis shows how the magnitude of the deformation 

depends on the final velocity and the duration of the accelera- 

tion, assuming that the beam behaves in a perfectly plastic- 

rigid manner.  This is the simplest problem introducing the 

finite time of acceleration that can be solved, and, although 

it is highly idealized, its solution will be valuable as a 

guide in the planning of experimental programs. 

I 

> 

The results  in this paper were obtained in the course of 
research conducted under Contract N7onr-35801 betv/een Brown 
University and the Office of Naval Research. 

Research Assistant,  Division of  Applied Mathematics,  Brown 
University. 
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List of symbols 

m = mass/unit length of beam 

2-t = length of beam 

MQ = fully plastic moment of beam 

x = distance along beam from mid-point 

t = time 

T = duration of acceleration pulse 

ts = time at which outer hinges disappear 

T = total time required to complete deformation 

v0 = velocity of mid-point of beam 

v = velocity of point distant x from mid-point of beam 

V = final velocity of beam 

R = striking force applied at mid-point of beam 

M = bending moment at x 

\ = distance of outer hinge from mid-point of beam 

K * \/l 

£0 = initial value of £ 

K = (1 - ZOk 

9 = angle of rotatiuxx of inner segment 

0 = final magnitude of 9; when t = T, Q - 8 

<p = angle of rotation of outer segment 

<X> = final magnitude of 9. 

•   •• llll—ll Bill    I I'I ~^~••"»••"• "«• 
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INTRODUCTION 

The assumption of plastic-rigid behavior has been 

adopted several times in previous analyses of the plastic deform- 

ation of beams subjected to various types of impact loading 

[1 - hy.  It is now desirable to verify its practical applica- 

bility by experiment.  This can only be done if the theoretical 

solutions relate to experimental conditions. In impact tests it 

is easier, for example, to measure velocities than forces. With 

this in mind, Symonds and Leth [1] solved the prob]em in which 

the mid-point of a free beam is suddenly caused to move with a 

given velocity; they neglected, however, the effect of finite 

time of impact.  Our present analysis, of which theirs is the 

special case of zero acceleration time, introduces this factor 

and therefore approaches more closely to real conditions.  It is 

our intention here to provide information on the effects of 

acceleration and pulse time which will be useful in the arrange- 

ment and interpretation of tests. 

The problem solved in this paper will now be specified. 

A uniform beam AB of length 2£ is at rest and without lateral 

restraint, when its mid-point 0 is struck laterally in such a 

way as to give to 0 constant acceleration for time T, and con- 

stant velocity V thereafter (Fig. 1).  It is required to find the 

resulting angle of deformation at the mid-point of the beam 

(9 in Fig. 2), assuming that the relation between bending moment 

and curvature is that shown in Fig. 3.  Perfectly plastic-rigid 

3. Numbers in square brackets refer to the Bibliography at the 
end of the paper. 

. .  .. .  .       • 
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mechanical "behavior means that there are no elastic effects and 

the beam bends only where it is subjected to the fully plastic 

moment M_, at which sections it can assume unlimited curvature 

while M0 is maintained*  Thus elastic vibrations are precluded 

and the solution is conspicuoiasly simplified. An analysis based 

on this assumption is likely to produce valid results for ductile 

materials only when the total energy absorbed in plastic deforma- 

tion exceeds by far the total elastic energy the beam could store 

in bending [1,2], 

There are three possible types of configuration that 

could arise from the motion imparted to the beam. Which of 

these obtains depends as follows on the magnitude of the non- 

dimensional quantity m£ V/M0T : 

p 
(a) m>t V/M0T _< 2, where m represents the mass per unit length of 

the beam.  The limit moment M0 is never achieved and hence 

there is no deformation, 

(b) 2 < m-t2V/M0T; < ^1.7  A plastic hinge appears at the mid- 

point and all the deformation is concentrated there. 

(c) m>?rV/M0T > !+1.7  Three plastic hinges occur, one at the 

mid-point and two symmetrically placed outer ones. The 

initial positions of the outer hinges depend upon V/T, but 

these hinges move outwards until in the course of time they 

r-ach points a quarter of the length of the beam from the 

ends, and then the bending moment is no longer sufficient to 

sustain chem and they disappear (Fig. 'H). These outer hinges 

leave behind them smoothly-deformed regions. 

*s*m 
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Conditions are always symmetrical about the mid-point of the 

beam. After stating briefly the assumptions made to facilitate 

our analysis, we shall discuss cases (b) and (c) in detail, Case 

(a) is trivial• 

Apart from the neglect of elastic effects the principal 

assumptions made are that the limit moment is unaffected by 

strain-rate [p]> strain-hardening and shear stresses [6, ?]• 

Experiments are needed to tell us how important these phenomena 

are, and within what range our results are useful. It is perhaps 

fortunate that although strain-hardening and high strain-rate 

tend to increase the limit moment, shear stresses influence it in 

the contrary sense, A further assumption made throughout the 

work is that the changes of shape of the beam are so small as 

to have a negligible effect on the equations of motion, 

ANALYSIS 

1. Case of One Plastic Hinge  (2 < m£2V/MQT < M-1.7) 
p 

If V/T is greater than 2M0/m£ the limit moment is 

always reached at the mid-point of the beam and a plastic hinge 

occurs there. This can easily be shown by considering the bending 

moment distribution caused by inertia forces In a rigid rod. 

The equations for the rotation of either half of the 

beam (Fig, 5) during the pulse and for the subsequent time are 

respectively 

0 - o V   J o n \ 
2 **  nut0 

and 

© = - o 3M 
"3 * (2) 

»£• 

, 
• 
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The plastic hinge disappears when © = 0. Application of this 

condition to (1) and (2) shows that the final angle of deforma- 

tion developed by the beam is 

e 3ri  V , intv2 

mt V V? M, (3) 

The value of mt V/MQT at which throe plastic hinges 

first appear can be elicited from the bending moment distribution. 

Let M be the bending moment at a point distant x from 0, The 

equation for the translatory motion of the beam during the 

acceleration r>uise is 

B " nxt X - B&- 0 

whence,using (1), 
£ = 1 m-t 2 + 3 ^o 
2   h T   z    9 

<»0 

(5) 
T  2 £ 

where R is the total force applied to the mid-point.  The moment 

at 0 is the limit moment M0, therefore, reckoning sagging bend- 

ing moment positive, 
x 
n 

M = Rx/2 - M0 - m (x - x' )(V/T -• x» ©)dx«, (6) 

0 

By substituting for R and © and then finding the value of x at 

which M is a maximum, we find that the outer hinge first appears 

when mt2V/M0T = 1+1.7 and then x/l =  O.^+O^f. 

In Table I are shown some values of the final angle @ 

for corresponding values of m£2V/M0t" lying between 2 and kl.7* 

These have been plotted in Pig. 9» 

iamm 
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TABLE I 

E£I N       J 
M  T      jl     N 

O • 

10 •0 3u 4-1,7 

M e   i 
o       I 0 ' 0.125 ! 0.188 0.225 i 0.300    0.338 0.351! 0.357 

I 

2.  Case of Three Plastic Hinges  (il V/M0t > H-1.7) 

If V/T is greater than, H-1.7 M /m<t three plastic hinges 

form simultaneously at the commencement of the motion. The 

initial positions of the symmetrically situated outer ones depend 

on the magnit\ide of V/T. We shall now seek equations of motion 
*   • 

for the beam by first taking any function v = v (t) for the 

acceleration of the mid-point.  These general equations can then 

be suitably adapted to represent oach phase of the motion in 

tarn (e.g. by putting vQ = V/t = constant for 0 < t < T). 

Conditions being symmetrical about the point 0, we 

need consider only half of the beam, OA (Fig. 6). H represents 

th° outer hinge in this half. The general equations of motion 

for OH and HA respectively are 

2MQ = 2|£ v0- 2^. 0 

M0 = SlLLj x)
3 •• 

(7) 

(8) 

where X = X(t) = distance of the outer hinge from the mid-point 0; 

—••• Ml—H   «»     I 
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© = angle of rotation of the inner segment OH; 

9 = angle of rotation of the cuter segment HA. 

The element of mass mdX, which is transferred from the outer to 

the inner segment as the yield hinge traverses a distance dX 

^nes not influence the equations because its momentum is not 

affected "by the transfer.  Equation (8) follows from there being 

zero shear force at H, and so from the acceleration of the centre 

of mass of HA being zero.  Further equations represent the veloc- 

ity and acceleration distribution along the rod: for x > X 

-j -  vQ -  0 dx - ; cpdx, 

J 0      J X 

(9) 

and therefore, by the rule for differentiation under integral 
X X 

signs,     .   •    i ..     ..   n .. 
V = V_ - i © dx - X© - | ©dx + Xcp. (10) 

•J 0 vJX 

But the acceleration of the mid-point of HA, x - i(£ + X) is 

zero, whence 

vQ - X9 - 1(£ - X)9 + X(9 - 0) = 0. (11) 

Elimination of © and 9 from (11) gives 

6M. 6M 

m X2 mil - X)2 
= _ X(9 - ©). (12) 

Having derived the general equations (7) to (12), let 

us investigate the motion and deformation of the beam in the 

following three phases: 

^T 
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; I during the acceleration pulse (0 < t < x)j 

J II the time between the end of the pulse and the elimination 

of the outer plastic hinges H(x < t <: ts) j 

III the time after this and until no more bending occurs at the 

mid-point 0(ts < t < T). 

It will be evident from our subsequent analysis that the outer 

hinges cease to be sustained before rotation ceases at the central 

onp* 

Phase It 0 < t .£ *c 

In this phase v = V/T = constant.  It can be shown 

that in this circumstance (12) demands that X = 0 and so \ - X 

*= constant for t < T.  Thus from (12), and putting XJk, =  C , 

12M t  52(1 - t,  )2 

— °    °     ° (13) 
m^2V    (1 - 2Z0) 

Ej We have, therefore, that throughout the pulse period the hinges 

do not move along the rod; the greater the value of V/T the 

closer are they to the mid-pointj their initial positions can 

never be farther from the mid-point than O.U-O^f-t because V/T 

must exceed lfl.7M0/ra-t .  Figure 7 shows V/T as a function of £0; 

the curve is asymptotic to the line K0 -  0. Henceforth in our 

work we shall express deformation as a function of £„ instead of 

V/t because of the consequent simplification. Figure 7 Is a 

means of rapid transformation into terms of V/'" if such is 

required. 

Returning to (7) and (8), for OH we have 

''Wr'p.miyug ».- 
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1 

• 
e - 2 V m\3 

)T 

SS 
2(1  - 2^o>   - s2 

V 
2^(1 - 2^o> I 

eT 
= 2  V 

(using (13)) 

10 

(iM-a) 

(l^o) 

(15) 

and similarly for HA 

CD = 
12M T 

in a-\o)3    (i - 2?0)(i - 50) 
V 
Z 

9_ =1 
2 rt 

(16) 

(17) 

Substitution of values for £  in these equations gives the re- 

sults representing conditions at t = T in the first two lines of 

Table II, page 16.  It is our object in this paper to determine 

the resultant deformation ©, so only the figures relating to it 

have been tabulated, and those for cp have been omitted. 

Phase II, T < t < tr 

The deflections and velocities at t = T are the initial 

conditions for the differential equations of motion for this 

phase.  The acceleration condition now is that v = 0, and so 
o   » 

(7), (8) and (11) become (18), (19) and (20): 

6M, 
0 = - 

cp  = 

0 JL 
mi3  £3 

12M
o 1 

m<l3   (1 - 0: 

- X© - & Z M cp* +     k 9 - 0)  = 0 

(18) 

(19) 

(20) 

't'W i-r^wr-'^  -•_   .-.- 
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Elimination of © and 9 from those equations gives 

-      • 

9 - © =J§ [. -I] (21) 
5 (l - o2    c" 

Differentiation of (21) with respect to t, and then a further 
• • • • 

suVstitution for 9 and 9 yields the following equation relating 

K  to t: 
if 
s  _ __     (1 - vr 
^2 - "r,(2? - 1) 

(22) 

the solution to which is 

1A 
5S/[(1  - 2^)       expU/2)]  = A (2J) 

1 

where A is a constant of integration depending on the angular 

velocities of the segments at t = t, 

A a 
72MQC 

imt2V 

(2V-) 

wnere 

7A 
CsC(50)=<l-250)  /6(l-50)[3(l-250)(l-50)-2^-6(l-50)*']exp(50/2) 

(25) 

The relation C = C(50) is shown in Fig. 8.  This phase of the 

problem is virtually solved now that (23) represents the movement 

of the outer hinges.  It merely remains to find the increase in 
0 

© during the period x < t < ts, and the angular velocities 9 and 

© at t by integrating (18) and (19) • 
S3 

From (18) and (23), 

0*8 J. 
©"dt = - 

6M 
o dt _ 2 V k-.-2.J2. 

vh 
m $ 

flj = f $ !  (l-r)-'T^expC. jkl-K*)]dK 
'-K, (26) 

% 
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where K = (1 - 2%)"r  and Kn corresponds to E . Then 

?• 
-2 V  g> 9dt = f w n~0 

0 

K, 

(n + l)K(l+n+2)exp[> jL(l  - K^ldK     (27) 

The  fact that when t = t_,  Z,  - J- and K = 0 follows   from  (21)  by s     2 
•   • 

putting q> = 9, which is the condition for the disappearance of 

the outer hinges.  Further, for the increase in 9 during this 

phase we have 

• s ,h 
Qdt = ;  (0 - 9 )dt + 

T7 
9 dt (28) 

which has to he evaluated by the same means as was (26).  The 

computed results are in Table II. The subscript s refers to 

conditions at t = ts» 

Phase III, t3 < t < T 

Only the hinge at the mid-point now remains, and the 

two halves of the beam rotate as rigid bent rods.  The equation 

of motion for OA is therefore 

9 = - 3M0/mt
: 

(29) 

so the angular acceleration is constant. The rotation persists 

until the angular velocity is reduced to zero.  Then t = T and 

9 reaches its final value 9.The results for this phase are also 

in Table II. 

•l-IIWIflHII IMKMR9MMN 
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Resultant Deformation for Whole Period 0 < t < T 
I 

Collecting together our data, we have ©, the final 

1 angle at the mid-point (when three hinges have been present), 

given in Table II.  All these results are subject to the angles 

being small, otherwise the equations of motion would be invali- 

dated by changes of shape. The working has been checked by 
«    • 

graphical integration to ensure that cp = 0 , and also by drawing 

up an energy balance for the case of £  = 0.3.  Only © has been 

described here.  Calculations show that 9 - $ is much less than 

9.  Figure 2 indicates qualitatively the sort of deformation that 

occurs.  It should be observed that most of the angle 9 is built 

up during the period t < t £ T. 

3.  Results 

All the values of G in Tables I and II (i = e. for both 

types of deformation configuration) have been plotted in Fig. 9, 

which contains the most important numerical results of the 

analysis.  In the graph the line M0©/m-t^ = 0.*+25 has been ob- 

tained from the work of Symonds and Leth [1] in which they 

considered the limiting case of infinite acceleration.  This 

result can also be derived by the method used in the present 

paper: (13) shows that for V/x —>oo , ^o~->0, and then suitable 

modification of (23) gives the required answer.  It is a satisfy- 

ing check on the computation for Fig. 9, that the graph of 

MQ9/m-tv is asymptotic to this limiting line.  It is worthy of 

note that, provided three hinges occur, our curve lies at all 

places within 15%  of the limiting case and wjthin this degree of 

approximation it is independent of V/T. 
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km     Illustrative Examples 

(a) For a iM  square steel bar 6" long, with mid-section 

accelerated to 50 ft/sec in 1/20 millisec 

m£2V/M0T = 1*2 

so we have the three hinge type of deformation. Figure 

9 gives 

0 = 0.358 ml^/V[0. 

Therefore 
G r 0.15 rdns. 

(Note: the limiting case of Symonds and Leth would 

give 6 = 0.18 rdns). 

(b) An 8'' x hj?"  @ 23 lbs, American Standard I beam 

32 ft. long, with mid-section accelerated to 50 ft/sec 

in 1 millisec, also deforms with three plastic hinges 

because 

ml V/MQT = 210 

Figure 9 gives 

6 = 0,395 mlV^/KQ 

= 0.22 rdns. 

(Note: the limiting case of Symonds and Leth would 

give 9 = 0.21+ rdns.) 

r •HMBM^MMM^^ 11       1 

- 
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CONCLUSIONS 

Figure 9 contains the major results of this work. The 

type of deformation that occurs in a beam subjected to the load- 

ing specified in this problem is governed by the non-dimensional 

quantity ml^Y/M^fc,     For ml'V/K  T _< 2 no plastic deformation is 
p 

caused.  If 2 < ml  V/MQT < 1+1.7 one hinge occurs at the mid- 

point and the damage can be ascertained for any particular case 
2 

by using Fig. 9. When, however, m-i V/M0T > '+1.7 the quantity 

M 8/fflvT is substantially constant and an approximation to within 

10$ is that 

0 = 0.1+ m£\r/M0   m-l2V/M0T > 1+1.7 (30) 

Thus 0 may be considered to be independent of T in this region 

and to depend only on the square of the velocity V. 

Experiments are now required for comparison with the 

results of  this paper.  It will then be known how influential 

are the various effects neglected in the analysis, chief among 

which are elastic vibrations, shear forces, strain-hardening, 

and strain-rate. 

IF 
•.>,..•     ...       '  •" 



All-112 16 

o 

M 

s 
PQ 

EH 

O 

O 

O 

ON 

O) 

lr\ 

CM 

ro 

O 

iTN 
\T\ CO 
C\J no 
.± m 

c*. ro 
1—j VfN \T\ CO 
o IN. <M rO 
o O J' ro 

• » • • 
o 

NO 

o 
1 

H O 

CO 
l—i PO J- IN 
rH ON C\J m 
O * J- rO 

• • t • 
o o H o 

CTN iTN 
ON o rO cs 
H lr% OJ m 
O CO J" ro 

• • • • 
o o 

 ... 1  
rH O 

C\J c 
m NO C\j o- 
m ro CM ro 
o lr\ J" m 

• • • m 
o H 

1 
r-t o 

CO CM 
CM CM 
ro J± 

e • 
CM 

1 
rH 

CO 
NO 
m 
ro • 
O 

rr \TN 
ro A CM rH     . NO 
ro rH CM no 

CO O J" J" CO « • • • • 
J" o 

I 
rH o 

    ...  - 

ro _*. # 
O fV") o O NO 
NO NO' J- CM ro 
Vrs O H J- ro 

0 * • • • 
vO o 

1 
rH O 

o * * * 
CO CM tN CO tr\ 
no IN H .H ro 
ON o u> Jr CO 

• • 9 • • 
ON o CO 

1 
rH o 

t* <—\ 
CJ! CO 

1 V—* o 
CO u> i 

CD • aF © 
*~s i *^^ 

t* CM 0} ^W OJ 
• o> O 

S3 $ 
e CD • CX o 5 

°^\> & =^l> •^l> e 

ro 
O 

CO 

ro 

vO 
ro 

O 

ft 
rO 

CO 
rO • 
O 

OJ 
ON 
ro 

O 

ON 
ON 
ro • 
O 

* 
o 

« 
o 

* 

o 

CD 

-ft _p   « 
e 

CO 
CM 

T3 

a3 

CN. 
CM 

c 
•H 

co 
Pi 
O 
•H 
co 

a 
P, 

CD 

to 
CD 

•H 

a) 
CO 

CD 
V 
C 
Q) 
CxO 
£Li 

g o 
o 

co 

O 

CD 

P 
ct) 
o 
CD 

,P 

>> 
CJ 
cd 

P 
V 
o 
CO 

CJ 

^rapesre* • ••'»'!      •   •imw ••     

.. .. 



/•»- 

All-112 17 

REFERENCES 

1.  P. S. Symonds and C.-F. A. Leth, "Impact of Finite Beams of 
Ductile Metal", Jour, of the Mech, and Phy. of 
Solids, 2, 92 (1954). 

?..  E. H. Lee and P* S. Symonds, "Large Plastic Deformation of 
Beams under Transverse Impact", Jour, of Appl„ Mechs., 
12, 308 (1952). 

3. P. S. Symonds^ i!Large Plastic Deformations of Beams under 
Blast Loading", Technical Report No. 99 of Brown 
University to Office of Naval Research under Contract 
N7onr-35801. 

4. B. A. Cotter and P. 8. Symonds, "The Plastic Deformation of 
a Beam under a Symmetric Impulsive Loading". Technical 
Report No. 10*+ of Brown University to the Office of 
Naval Research under Contract N7onr-35301, 

5. G. I. Taylor, "The Testing of Materials at High Rates of 
Loading", James Forrest Lecture, Jour* Inst. Civil 
Engrs., 26, 486 (194-6). 

6. M. R, Horne5 "The Plastic Bending of Mild Steel Beams with 
Particular Reference to the Effect of Shear Forces", 
Proc, Roy. Soc, A, 202, 2^   (195D« 

7» C.-F. A. Leth. "The Effect of Shear Stresses on the Carrying 
Capacity cf I-Beams", Tech. Report No. 107 of Brown 
University to the Office of Naval Research under 
Contract N7onr-35801, 



All-112 
0 A 

3 

F x ~k ~* H 
Mass/Unit Length - m 

FIG. I 

ACCELERATION   AND 
VFLOC1TY OF MID-POINT 
OF  BEAM 

V/T 

Time 

Time 

18 

"" ^/2 -*t*-// 2 —H 

FI3- 2 

FINAL DEFORMATIONS 
(8   AND $ ARE SMALL) 

i 

i 
BM 

i 

Mo 

r aj.   3 

BENDING MOMENT-CURVATURE 
RELATION FOR  THE   BEAM 



& 

All-112 

XL ^==Y===P= XT 

-in 

FIG. « 

FIG. 5 

42-*| 

19 

M„i  \\,   *2"~r^r~» 

1 
I 
1 

n 

FIG.6 

(R * FORCE  IMPRESSED   AT   0) 



I 

~MoT       All-112 

1200 

UOO 

1000 

300 

8C0 

700 

600 

500 

400 

300 

200 

100 

20 

FIG. 7 

THE  RELATION Of" £0 TO V/T 

FOR     )L•JL   >   4|>7 

0.05       0.10        015        0.20       0.25     0.30       0.35        0-40 

•f-pss- 
iaxMmsgymmm 



All-n|20r 

0.9- 

0J8 

0.7 

OS 

c(U 

FIG. 8 

CONSTANT OF INTEGRATION C(^) 

0.5r 

0.4 

0.3 

02 

£j. 

TTP55* 



. 

Al1-112 22     <*-/To 
>• 

cu 

O 
O 

' 

i 

I 56 

<n 

O z 
< 
> 
o 

u. 

o o 
3> 

V-"".V    i - 



* •n-mtTnvr^tmimvmimttmm wwrnm^m^mm •»*•*-.: 
•^.    -•   ... 

Armed Services Technica ! In-Fc 
1 fiforoiaiioo 9 

iff (If 
1  t*   I',. I   • 

Because of our limited supply, you are requested to return this copy WJK'N IT HAK SB'JH/ 
YOUR PURPOSE so that it may be made available to other :;giy.M?sters. Youi cooperation 
will be appreciated. 
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NOTICE:    WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTEER DAT,'. 
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WEPH A DEFINITELY HELA'l 
GOVERNMENT PROCUREMENT OPERATION, THE U. S. OOVTiS'iiJMX&'-T TBE9XBY INCU3S 
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE 
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OH I'  AMY WAY SUPPLIED THE 
SAIL? DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE F.IEGAflDED BY 
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENt EWfCi THE HOLDER OR ANY tflfl: 
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OSt.PSE.'IfiSaOM TO MANUFilCT- 
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAX' 8E RELATED TBEFST 
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